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Fig. 7. Rise time of distorted pulse as a function of propagation distance.
Theoretical values are compared against those experimentally measured
(Courtesy: K. Meyer, University of Rochester, NY).
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both cases. This implies that ultrashort pulses (having band-
widths greater than 700 GHz for this case) will suffer greater
dispersion in the coplanar line. On the other hand, since the
increase of €. with frequency begins more gradually for coplanar
lines, longer pulses with narrow bandwidth experience less varia-
tion of €., and hence less distortion. This difference of behavior
is illustrated in Fig. 4. The dispersion of both coplanar and
microstrip lines can be reduced by reducing the substrate thick-
ness. For coplanar lines, dispersion can also be slightly reduced
by decreasing the strip and slot dimensions, but the €., at low
frequency remains lower then the corresponding microstrip and
thus it is intrinsically more dispersive for short pulses.

The only experimental measurement of dispersion in coplanar
transmission lines, to our knowledge, has been made at the
University of Rochester [9}, [10] on lithjum tantalate substrates
using an electrooptic sampling technique. Consequently, calcula-
tions were made for their experimental configuration which
utilizes two coplanar strips each 50 p wide and separated by 50 p
on a 500-p thick LiTaO; substrate having ¢, = 43. The numeri-
cally derived dispersion curve is shown in Fig, 5. For this case,
the constants in curve-fitting (17) are ¢,
1.69, and frp = 23.15 GHz. Using their experimentally measured
pulse shape at 0.9 mm (Fig. 6(a)) with the falling edge extrapo-
lated (the data supplied was truncated), the pulse shape at 4 mm
was computed (Fig 6(b)) from the dispersion relation. The agree-
ment with the experimental result (Fig. 6(c)) is found to be
reasonable. The frequency dependence of the characteristic im-
pedence and that of the losses in the conductor and substrate is
expected to have very little effect on the pulse distortion in
coplanar lines, extrapolating from the calculations made for the
microstrip line in our previous paper [3]. Pulse dispersion was
also calculated for different distances of propagation and 10-90
percent risetime plotted as a function of distance. Again good
agreement with experimental data supplied is obtained (Fig. 7).

IV. CONCLUSIONS

A computer program has been developed to. generate disper-
sion relations for coplanar-type transmission lines up to terahertz
frequencies for a wide range of configurations and dimensions.
The number of terms in the field expansions and the order of the
gaussian quadrature integration are specified in order to optimize
computing time. A simple approximate formula also has been
presented which can give dispersion relations for coplanar wave-
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guides for a wide range of parameters. The results have been used
to predict distortion of picosecond electrical pulses propagating
in such lines. Good agreement has been obtained with available
experimental results on LiTaO, substrates.

Dispersion of coplanar waveguides has been compared to an
equivalent microstrip (same substrate thickness and characteristic
impedance) and is found to be more for subpicosecond pulses but
less for longer pulses. Finally, we note that dispersion in coplanar
lines can be greatly reduced by using a superstrate of the same
material, which would remove the inhomogeneity of the medium.
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Birefringence Analysis of Anisotropic Optical Fibers
Using Variational Reaction Theory

RUEY-BEEI WU anp CHUN HSIUNG CHEN

Abstract —The variational reaction theory is applied to achieve a varia-
tional equation for the study of the single-mode optical fibers with aniso-
tropic core media. Emphasized in this paper are the numerical resulis for
the birefringence of the two principal modes in discussing the effects due to
differences in refractive indices, anisotropy parameters, and index profiles.

I. INTRODUCTION

Optical fibers have found applications in various areas due to
the properties of low loss, high performance, electromagnetic
immunity, and small size. Recently, single-mode optical fibers
have received great attention because of small dispersion, but the
fundamental HE,;; modes in two orthogonal polarizations are
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degenerate due to the circular symmetry in fibers. Hence, a small
perturbation or an imperfection in the ambient conditions may
make the polarization of a mode statistically varying as it is
propagated along the fibers [1].

To counteract this effect, elliptical core/cladding deformation
and stress anisotropy [2]-[6] have been introduced to result in the
highly birefringent fibers that can transmit single polarized waves
for a long distance. These polarization-maintaining fibers are
useful in coherent communication systems [7], fiber-optical
sensors [8], and are compatible with integrated optical circuits [9].

In characterizing the birefringent optical fibers, it is important
to calculate the birefringence, the difference between the propa-
gation constants, of the two orthogonal HE;; modes. Various
methods have been devoted to the analysis of isotropic-optical
fibers with noncircular geometry or inhomogeneous material,
such as the perturbation approximation [10], circular-harmonic
computer analysis [11], finite-element method [12]-[14], and
finite-difference method [15]. However, there still lacks a rigorous
method for the analysis of anisotropic-optical fibers. A varia-
tional method has been employed for homogeneous and trans-
versely anisotropic fibers [16], but is uneasy for more general
cases where inhomogeneity or even arbitrary anisotropy is en-
countered.

Recently, a variational reaction theory [17] has been estab-
lished to treat the scattering and propagation problems associated
with dielectric structures. This theory is characterized by achiev-
ing a variational formulation that may properly absorb the radia-
tion and continuity conditions and then employing the finite-ele-
ment method together with the frontal solution technique to solve
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Let the fiber be arbitrary in shape and consist of inhomoge-
neous and anisotropic materials. The permeability is a scalar p;
while the permittivity tensor € is

€,\:y €z = =
€, €,
€ € = -
vz T
ezy €, € €.

where the subscript ¢ means the component transverse to the z
direction, and the superscript 7 means the transpose of a matrix.

For the scattering problem, we can assume that the incident
plane wave (E', H') and thus the scattered wave (E°, H*) have
the common phase factor ¢/¢“~#2), Hence, this phase factor is
omitted throughout this paper so that the problem can be reduced
to a two-dimensional one.

Based on the variational reaction theory [17], we choose an
artificial boundary with radius 7,, outside which is a homoge-
neous region with material constant (e, p,). The scattered field
in the outside region can be expanded by the Hankel’s functions,
ie.,

(1)
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where k, =‘/k§ -B%, k,= Y€, =2m/X,, M, =y, /€,
(r,¢) is the polar coordinate and e, hJ, are the scattering
coefficients.

By imposing continuity conditions along the artificial boundary,
we can obtain a variational equation for the field inside the
boundary, that is [17]
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the variational equation. This theory can be easily extended to where
arbitrarily-shaped guiding structures involving inhomogeneous P 3
and even anisotropic materials. In this paper, we investigate the V,=—X+—)
birefringence characteristics of the anisotropic optical fibers with dx dy

various index differences, anisotropy parameters, and index pro-
files.

II.

Optical fibers for guidance of electromagnetic waves have
become essential parts of optical systems. Unlike the traditional
metal-walled waveguides commonly adopted in microwave sys-
tems, there is no clear distinction between the “interior” and
“exterior” regions in optical fibers. Both regions are merged into
each other so that not only the scattered wave but also the guided
wave may be excited by an arbitrarily incident wave. This thus
provides a motivation of considering the scattering problem of a
uniform optical fiber illuminated by an obliquely incident plane
wave.

VARIATIONAL FORMULATION

K= (wzl"ztt - Bzi) N
Zr(r}) = k,rOJ,;,(k,ro)/Jm(k,ro)
Zr(nZ) = ktrDHr(nZ)l(ktro)/Hr(nZ)(ktro)

and the integration region @ extends over the area r <7,. Note
that the matrix inversion in (10) of [17] is now carried out by

jwétt__
JjB2 %1

where 1 is a unit tensor.
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Fig. 1. Geometry of anisotropic circular fibers. €, is relative permittivity
tensor and 6, is angle between ¢-axis and z-axis.

III. NuMERICAL RESULTS

As shown in Fig. 1, we consider an a-power circular fiber of
radius r, with core anisotropy due to the anisotropic stress
during the drawing process in manufacturing. Without loss of
generality, the relative permittivity tensor of the anisotropic and
inhomogeneous fiber is assumed to be

i+ A-[l——(r/ra)a]

_ sif, 0 sin, cosé,
¢ = (1+gq 0 0 0 . r<r,
sinf,cosf, 0  cos®4,
1, r>r,.
(%)

Here, A is the parameter associated with the index difference, q
is the parameter to model the core anisotropy, and 4, is the angle
between the anisotropic c-axis and the z-axis. In what follows, we
will investigate the effects of these parameters on the birefrin-
gence. t

First, the variational equation (3) is solved by the finite-ele-
ment method together with the frontal solution technique. The
aim is to compute the boundary field and thus the scattering
coefficients e;,, 45, for the cases with inhomogeneous waves
(|B]> k,) incident. By searching for the poles of scattering
coefficients, the effective refractive index n,=p8/k, can be
found [17]. The dispersion curves will then be given in terms of
the normalized propagation constant #? and the normalized
frequency V where

P2 =(n2-1)/A
V=k,ryVA. (6)

The normalized birefringence A#? is thus defined as the dif-
ference between the normalized propagation constants of the two
principal HE{; and HE}, modes.

Fig. 2(a) shows the propagation constants #2 versus the angle
6. at frequencies ¥ =1.2, 2.1, and 3.9 for the step-index (e = o0)
fiber with A =0.1, g=0.1. The propagation constant of HE},
mode depends on §,, hence, the two principal HEf; and HE},
modes are no more degenerate as 8, # 0°. At the extreme case of
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Fig. 2 Effect of c-axis angle #, on (a) propagation constants of and (b)
normalized birefringence between principal HEf; and HE}, modes at fre-
quencies ¥'=1.2, 2.1, and 3.9. Step-index anisotropic fiber with parameter
A=0.1 and ¢ =0.1 is considered.
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Fig. 3  Effect of index difference A on normalized birefringence at frequen-

cies V=12, 2.1, and 3.9 for step-index anisotropic fiber with g=0.1 and
6, = 90°.

6. =90°, the anisotropy in x and y directions reaches its maxi-
mum and thus the birefringence becomes the greatest. Shown in
Fig. 2(b) is the normalized birefringence A%P? versus 6,. It is
noted that AP? is larger when frequency V is higher. It can be
compared with the case for isotropic but elliptical fibers where
the birefringence reaches its maximum and then decreases as
frequency increases [10]. A further check reveals that the birefrin-
gence is proportional to sin*é,, i.e., the difference between the
dielectric constants in x and y directions. Therefore, only the
angle 8, = 90° is considered in the following cases.

Fig. 3 shows the effect of index difference on the normalized
birefringence at frequencies ¥'=1.2, 2.1, and 3.9 for the step-
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Fig. 4. Effect of anisotropy parameter g on normalized birefringence at
frequencies V' =1.2, 2.1, and 39 for step-index fiber with A =0.02 and
6, =90°.

Fig. 5. Dispersion curve #%(V) and birefringence curve AP?/g (dashed
line) for step-index fiber. Solid line shows birefringence curve obtaimned from

®)-

index fiber with ¢ = 0.1. The most worthy to be stated is that the
normalized birefringence A%? is nearly constant for A < 0.1. It
means that the birefringence An, = AB/k, is proportional to A.
Since the birefringence due to core deformation is proportional to
A? the core anisotropy plays a much more significant role in
birefringence characteristics for the fibers with vanishing index
differences.

Fig. 4 shows the effect of anisotropy parameter ¢ at frequen-
cies V=12, 2.1, and 3.9 for the step-index fiber with A = 0.02.
As ¢ tends to zero, the fiber becomes isotropic and the birefrin-
gence disappears. For larger ¢, where the difference between
dielectric constants in x and y directions is A- g, the normalized
birefringence is proportional to g. In general, it is much more
easier to establish a larger ¢ than a larger A for optical fibers,
hence, producing core anisotropy is more promising in manufac-
turing highly birefringent fibers.

From the aforementioned discussions, it is concluded that
AP?/q does define a birefringence curve for anisotropic fibers.
Fig. 5 shows the dispersion curve and birefringence curve (dashed
line) for a step-index circular fiber. It has been pointed out that,
if the dispersion curve for a step-index isotropic fiber is #%(V),
then that for step-index anisotropic fiber may be approximately

expressed as [16]
P =4, 7°(/4, V) (7

where 4, =1 and 1+ ¢ for HE{, and HE}, modes, respectively.
Therefore, the birefringence curve can be obtained approximately
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Fig. 6. Birefringence curves for a-power fibers with a =1, 2, 4, and infinity
(step-index case). Solid and dashed lines represent results obtained from (8)
and present method, respectively.

by

Y PO ) 2
AP /q~(1+2 e P(V). (8)
The solid line in Fig. 5 shows the results from (8), which is
compared with the dashed line with satisfaction.

Though (7) is derived for step-index fibers only, it seems also
satisfactory for inhomogeneous fibers as depicted in Fig. 6, which
shows the birefringence curves for a-power fibers with a =1, 2, 4
and infinity (step-index case). The solid lines are the results from
(8), while the dashed lines are the results from our method. Since
the core deformation affects little on the birefringence curve for
fibers with vanishing index differences, the agreement of both
results in Fig. 6 suggests that (8) may provide an efficient and
accurate formula in designing even a birefringent inhomogeneous
fiber.

IV. ConNcLusioN

In this paper, the variational reaction theory and the scheme of
searching for the poles of scattering coefficients have been ap-
plied to investigate the birefringence of the two principal HE,
and HE}; modes in the anisotropic fibers. For the fibers with
elliptical deformation, the birefringence, which is proportional to
the square of the index difference, is always very small and
insignificant. On the other hand, the birefringence, due to core
anisotropy, is proportional to the index difference multiplied by
the anisotropy parameter and thus is much more significant. It
has also been notified that the birefringence curve, which is
important in describing polarization characteristics of a birefrin-
gent inhomogeneous fiber, can be approximately obtained from
the dispersion curve of an isotropic circular fiber.
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