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Fig. 7. Rise time of distorted pulse ss a function of propagation distance.

Theoretical vafues are compared against those experimentally measured

(Courtesy: K. Meyer, University of Rochester, NY).

both cases. This implies that ultrashort pulses (having band-

widths greater than 700 GHz for this case) will suffer greater

dispersion in the coplanar line. On the other hand, since the

increase of ~eff with frequency begins more gradually for coplanar

lines, longer pulses with narrow bandwidth experience less varia-

tion of Ceff and hence less distortion. This difference of behavior

is illustrated in Fig. 4. The dispersion of both coplanar and

microstriD lines car-be reduced by reducing the substrate thick-

ness. Fo~ coplanar lines, dispersi& can als~ be slightly reduced

by decreasing the strip and slot dimensions, but the C=ff at low

frequency remains lower then the corresponding microstrip and

thus it is intrinsically more dispersive for short pulses.

The only experimental measurement of dispersion in coplanar

transmission lines, to our knowledge, has been made at the

University of Rochester [9], [10] on lithium tantalate substrates

using an electrooptic sampling technique. Consequently, calcula-

tions were made for their experimental configuration which

utilizes two coplanar strips each 50 p wide and separated by 50 p

on a 500-p thick LiTa03 substrate having c, = 43. The numeri-

c~ly derived dispersion curve is shown in Fig. 5. For this case,

the constants in curve-fitting (17) are c,= 23.68, a = 51.3, b =

1.69, and ~TE = 23.15 GHz. Using their experimentally measured

pulse shape at 0.9 mm (Fig. 6(a)) with the falling edge extrapo-

lated (the data supplied was truncated), the pulse shape at 4 mm

was computed (Fig 6(b)) from the dispersion relation. The agree-

ment with the experimental result (Fig. 6(c)) is found to be

reasonable. The frequency dependence of the characteristic im-

pedence and that of the losses in the conductor and substrate is

expected to have very little effect on the pulse distortion in

coplanar lines, extrapolating from the crdculations made for the

microstrip line in our previous paper [3]. Pulse dispersion was

also calculated for different distances of propagation and 10-90

percent risetime plotted as a function of distance. Again good

agreement with experimental data supplied is obtained (Fig. 7).

W, CONCLUSIONS

A computer program has been developed to generate disper-

sion relations for coplanar-type transrnission lines up to terahertz

frequencies for a wide range of configurations and dimensions.

The number of terms in the field expansions and the order of the

gaussian quadrature integration are specified in order to optimize

computing time. A simple approximate formula also has been

presented which can give dispersion relations for coplanar wave-

guides for a wide range of parameters. The results have been used

to predict distortion of picosecond electrical pulses propagating

in such lines. Good agreement has been obtained with available

experimental results on LiTa03 substrates.

Dispersion of coplanar waveguides has been compared to an

equivalent microstrip (same substrate thickness and characteristic

impedance) and is found to be more for subpicosecond pulses but

less for longer pulses. Finally, we note that dispersion in coplanar

lines can be greatly reduced by using a superstrata of the same

material, which would remove the inhomogeneity of the mecliurn.
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Birefringence Analysis of Anisotropic Optical Fibers

Using Variational Reaction Theory

RUEY-BEEI WU AND CHUN HSIUNG CHEN

,@tract —Tfte variational reaction theory is appfied to achieve a vssria-

tionaf equation for the study of the siugle-mode optical fibers with msiso-

tropic core media. Emphasized in this paper are the numericaf resulls for

the birefrbtgence of the two principal modes in discussing the effects due to

differences in refractive indices, anisotropy paramete~ and index profiles.

I. INTRODUCTION

Optical fibers have found applications in various areas due to

the properties of low loss,, high performance, electromagnetic

immunity, and small size. Recently, single-mode optical fibers

have received great attention because of small dispersion, but the

fundamental HE1l modes in two orthogonal polarizations are
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degenerate due to the circular symmet~ in fibers. Hence, a small

perturbation or an imperfection in the ambient conditions may

make the polarization of a mode statistically varying as it is

propagated along the fibers [1].

To counteract this effect, elliptical core/cladding deformation

and stress anisotropy [2]–[6] have been introduced to result in the

highly birefringent fibers that can transmit single polarized waves

for a long distance. These polarization-maintaining fibers are

useful in coherent communication systems [7], fiber-optical

sensors [8], and are compatible with integrated optical circuits [9].

In characterizing the birefringent optical fibers, it is important

to calculate the birefnngence, the difference between the propa-

gation constants, of the two orthogonal HE1l modes. Various

methods have been devoted to the analysis of isotropic-optical

fibers with noncircular geometry or inhomogeneous material,

such as the perturbation approximation [10], circular-harmonic

computer analysis [11], finite-element method [12]–[14], and

finite-difference method [15]. However, there still lacks a rigorous

method for the analysis of anisotropic-optical fibers. A varia-

tional method has been employed for homogeneous and trans-

versely anisotropic fibers [16], but is uneasy for more general

cases where inhomogeneit y or even arbitrary anisotropy is en-

countered.

Recently, a variational reaction theory [17] has been estab-

lished to treat the scattering and propagation problems associated

with dielectric structures. This theory is characterized by achiev-

ing a variational formulation that may properly absorb the radia-

tion and continuity conditions and then employing the finite-ele-

ment method together with the frontal solution technique to solve

Let the fiber be arbitrary in shape and consist of inhomoge-

neous and anisotropic materials. The permeability is a scalar p;

while the permittivity tensor i is

‘=E: $ ;]=[:: ::] (11

where the subscript t means the component transverse to the z

direction, and the superscript T means the transpose of a matrix.

For the scattering problem, we can assume that the incident

plane wave (~, ~) and thus the scattered wave (@, ~) have

the common phase factor eJ(of - 62). Hence, this phase factor is

omitted throughout this paper so that the problem can be reduced

to a two-dimensional one.

Based on the variational reaction theory [17], we choose an

artificial boundary with radius rO, outside which is a homoge-

neous region with material constant (CO, pO). The scattered field

in the outside region can be expanded by the Hankel’s functions,

i.e.,

where k, =~~, kO = u~= 27r/A0, qO =~~”,

(r, O) is the polar coordinate and e;, h~ are the scattering

coefficients.

By imposing continuity conditions along the artificial boundary,

we can obtain a variational equation for the field inside the

boundary, that is [17]

(3)

the variational equation. This theory can be easily extended to

arbitrarily-shaped guiding structures involving inhomogeneous

and even anisotropic materials. In this paper, we investigate the

birefringence characteristics of the anisotropic optical fibers with

various index differences, anisotropy parameters, and index pro-

files.

11. VARIATIONAL FORMULATION

Optical fibers for guidance of electromagnetic waves have

become essential parts of optical systems. Unlike the traditional

metal-walled waveguides commonly adopted in microwave sys-

tems, there is no clear distinction between the “interior” and

‘cexterior” regions in opticaf fibers. Both regions are merged into

each other so that not only the scattered wave but also the guided

wave may be excited by an arbitrarily incident wave. This thus

provides a motivation of considering the scattering problem of a

uniform optical fiber illuminated by an obliquely incident plane

wave.

where

aA 8A

“=ZX+ZY

~ s ( ~’p:,, _ p’~) -’

2$) = klrOJL( k,rO)/J~( k,r.)

z:) = k,rOHf)’( k,r.)/Hf) ( k,r.)

and the integration region O extends over the area r < rO. Note

that the matrix inversion in (10) of [17] is now carried out by

(4)

where I is a unit tensor.
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Fig. 1. Geometry of arrisotropic circular fibers. ~, is relative permittivity

tensor and 0= is arrgfe between c-axis and z-axis.

III. NUMERICAL l@ULTS

As shown in Fig. 1, we consider an a-power circular fiber of

radius rO with core anisotropy due to the anisotropic stress

during the drawing process in manufacturing. Without loss of

generality, the relative permittivity tensor of the anisotropic and

inhomogeneous fiber is assumed to be

(~+ A-[l-(r/’rO)”]

-p[

sin2 ec O sin 0, cos OC

Z, = . ;+q o 0

1}

o, r<rO

sin OCcos 9, 0 COS2ec

i, rBrO.

(5)

Here, A is the parameter associated with the index difference, q

is the parameter to model the core anisotropy, and 6JCis the angle

between the anisotropic c-axis and the z-axis. In what follows, we

will investigate the effects of these parameters on the birefrin-

gence. 1

First, the variational equation (3) is solved by the finite-ele-

ment method together with the frontal solution technique. The

aim is to compute the boundary field and thus the scattering

coefficients e;, h~ for the cases with inhomogeneous waves

(IPI> ~.) incident.BY searching for the poles of scattering
coefficients, the effective refractive index n ~ = ~/kO can be

found [17]. The dispersion curves will then be given in terms of

the normalized propagation eortstant @2 and the normalized

frequency V where

$?2= (n: –1)/A

V= kOrO~. (6)

The normalized birefringence AS%2 is thus defined as the dif-

ference between the normalized propagation constants of the two

principal HE[l and HE~l modes.

Fig. 2(a) shows the propagation constants 92 versus the angle

0, at frequencies V= 1.2, 2.1, and 3.9 for the step-index (a= eo)

fiber with A = 0.1, q = 0.1. The propagation constant of HE~l

mode depends on OC,hence, the two principa3 HE~l and HE{l

modes are no more degenerate as d, # 0°. At the extreme case of
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Fig. 2 Effect of c-axis angle OC on (a) propagation constants of and (b)

normalized birefringence between principaf HE~l aud HE{I modes at fre-

quencies V= 1.2, 2.1, and 3.9. Step-index arrisotroplc fiber with parameter

A = 0.1 and q = 0.1 is considered.
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Fig. 3 Effect of index difference A on normalized birefringence at frequen-

cies V = 1.2, 2.1. and 3.9 for step-index anisotropic fiber with q = 0.1 arrd

8C = 90°.

0( = 90°, the anisotropy in x and y directions reaches its maxi-

mum and thus the birefringence becomes the greatest. Shownl in

Fig. 2(b) is the normalized birefnngence A92 versus OC. It is

noted that Ai72 is larger when frequency V is higher. It can be

compared with the case for isotropic but elfipticaf fibers where

the birefringence reaches its maximum and then decreases as

frequency increases [10]. A further check reveals that the birefrin-

gence is proportional to sin2 0,,, i.e., the difference between the

dielectric constants in x and y directions. Therefore, only the

angle dC= 900 is considered in the following cases.

Fig. 3 shows the effect of index difference on the normalized

hirefringence at frequencies V= 1.2, 2$1. and 3.9 for the ste~-------- _ . . .
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Fig. 4. Effect of anisotropy parameter q on normalized birefringence at

frequencies V = 1.2, 2.1, and 39 for step-index fiber with A = 0.02 and

0’ = 90”.
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Fig. 5. Dispersion curve ~z ( V) and birefringence curve A92/q (dashed

line) for step-rndex fiber. Solid line shows birefringence curve obtarned from

(8).

index fiber with q = 0.1. The most worthy to be stated is that the

normalized birefringence A@ 2 is nearly constant for A <0.1. It

means that the birefringence An, = A/3/k0 is proportional to A.

Since the birefringence due to core deformation is proportional to

A2, the core anisotropy plays a much more significant role in

birefringence characteristics for the fibers with vanishing index

differences.

Fig. 4 shows the effect of rmisotropy parameter q at frequen-

cies ~ =1.2, 2.1, and 3.9 for the step-index fiber with A = 0.02.

As q tends to zero, the fiber becomes isotropic and the birefrin-

gence disappears. For larger q, where the difference between

dielectric constants in x and y directions is A. q, the normalized

birefringence is proportional to q. In general, it is much more

easier to establish a larger q than a larger A for opticaf fibers,

hence, producing core anisotropy is more promising in marmfac-

turing highly birefringent fibers.

From the aforementioned discussions, it is concluded that

A@2/q does define a birefnngence curve for anisotropic fibers.

Fig. 5 shows the dispersion curve and birefringence curve (dashed

line) for a step-index circular fiber. It has been pointed out that,

if the dispersion curve for a step-index isotropic fiber is 92( P’),

then that for step-index anisotropic fiber may be approximately

expressed as [16]

(7)

where ,4,, = 1 and 1 + q for HEfl and HE~l modes, respectively.

Therefore, the birefringence curve can be obtained approximately
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Fig. 6. Birefringence curves for a-power fibers with a =1. 2, 4, and infinity

(step-index case). Solid and dashed lines represent results obtained from (8)

and present method, respectively.

by

(8)

The solid line in Fig. 5 shows the results from (8), which is

compared with the dashed line with satisfaction.

Though (7) is derived for step-index fibers only, it seems also

satisfactory for inhomogeneous fibers as depicted in Fig. 6, which

shows the birefringence curves for a-power fibers with a =1, 2, 4

and infinity (step-index case). The solid lines are the results from

(8), while the dashed lines are the results from our method. Since

the core deformation affects little on the birefnngence curve for

fibers with vanishing index differences, the agreement of both

results in Fig. 6 suggests that (8) may provide an efficient and

accurate formula in designing even a birefringent inhomogeneous

fiber.

IV. CONCLUSION

In this paper, the variational reaction theory and the scheme of

searching for the poles of scattering coefficients have been ap-

plied to investigate the birefrirtgence of the two principal HE:I

and HE~l modes in the anisotropic fibers. For the fibers with

elliptical deformation, the birefringence, which is proportional to

the square of the index difference, is always very small and

insignificant. On the other hand, the birefringence, due to core

anisotropy, is proportional to the index difference multiplied by

the anisotropy parameter and thus is much more significant. It

has also been notified that the birefringence curve, which is

important in describing polarization characteristics of a birefnn-

gent inhomogeneous fiber, can be approximately obtained from

the
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